
Chapter 1: Creating a
Basic Page with HTML
In This Chapter
✓ Getting the 411 on HTML and web pages

✓ Putting HTML tags into the correct section

✓ Integrating images and links into your page

✓ Ensuring that your HTML is valid

H
yperText Markup Language (HTML) is the language of the web. When
you go to a web page in your web browser such as Internet Explorer,

Firefox, or Safari, the browser downloads and displays HTML.

At its heart, HTML is just a document, much the same as a document you’d
make in a word processor. A program like Microsoft Word is used to view
word processor documents because it knows how to read and display them.
Likewise, when it comes to the web, the web browser is the program that
knows how to read and display documents created with HTML.

Word processor documents can be created and read with a single program.
On the other hand, HTML documents need different programs for creation
and reading; you can’t create HTML documents with a browser. You create
HTML documents using a program called an editor. This editor can be as
simple as the Notepad program that comes with Microsoft Windows or as
complex as Eclipse or Microsoft Visual Studio. You can typically use the
same program to create HTML documents that you use to create PHP pro-
grams.

This chapter describes HTML documents and shows how to build an HTML
page that you can view through a web browser using the most current ver-
sion, HTML5.

Understanding the HTML Building Blocks
HTML documents being just documents, they can be stored on any com-
puter. For instance, an HTML document can be stored in the Documents
folder on your computer. However, you’d be the only one who could view
that HTML document on your computer. To solve that problem, web docu-
ments or pages are typically stored on a computer with more resources,

Understanding the HTML Building Blocks90

known as a web server. Storing the document on a web server enables other
people to view the document.

 A web server is a computer that runs special software that knows how to
send (or serve) web pages to multiple people at the same time.

HTML documents are set up in a specific order, with certain parts coming
before others. They’re structured like this so that the web browser knows
how to read and display them. When you create an HTML document, it’s
expected that you’ll follow this structure and set up your document so the
browser can read it.

Document types
Web browsers can display several types of documents, not just HTML, so
when creating a web document the first thing you do is tell the browser
what type of document is coming. You declare the type of document with a
special line of HTML at the top of the document.

Web browsers can usually read documents in many formats, including
HTML, XML, XHTML, SVG, and others. Each of these documents lives by
different rules and is set up differently. The document type tells the browser
what rules to follow when displaying the document.

 In technical terms, the document type is called the Document Type
Declaration, or DTD for short.

In prior versions of HTML, developers needed to constantly copy and
paste the document type into the document because it was both long and
complicated. With the release of the latest version of HTML, called HTML5,
the document type has been greatly simplified. The document type for
HTML5 is

<!doctype html>

This will be the first line of every HTML document that you create, before
anything else. Any time you need to display HTML, you include a document
type, sometimes called a doctype.

You may be tempted to use <!doctype html5>, but there is no version
number associated with the HTML5 document type. When the next version
of HTML comes out, you won’t have to go back and update all your document
types to HTML6 (unless, of course, they change the document type definition
again!).

You may see the other, older document types in your career as an HTML
developer. They include:

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Sections of an HTML Document 91

HTML 4.01 Strict <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML
4.01//EN”

 “http://www.w3.org/TR/html4/strict.dtd”>

HTML 4.01 Transitional <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML
4.01 Transitional//EN”

 “http://www.w3.org/TR/html4/loose.dtd”>

XHTML 1.0 Strict <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0
Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

XHTML 1.1 DTD <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//
EN”

 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

Other document types exist as well, and most of them are similarly complex
and difficult to remember. If you see these document types on a web page,
you’ll know that the page may use slightly different syntax to create its
HTML document.

HTML documents are made up of letters and words enclosed in angle
brackets, sometimes called less-than or greater-than signs:

< >

For example, here’s the main element in an HTML document, also called the
root element:

<html>

Typically, HTML elements have both opening and closing tags. Elements are
closed with a front-slash in front of the element name. Seeing <html> in the
document means that later on the document will have </html> to close that
element. It is said that everything in between the opening <html> and closing
</html> makes up the document and is wrapped inside of those elements.

Sections of an HTML Document
HTML documents use a specific structure. This structure enables the
document to be read by a web browser. You’ll now see the three main parts
of an HTML document.

Up until now you may have been thinking of HTML as creating documents.
What’s the difference between an HTML document and an HTML page?
Nothing. The two terms are interchangeable.

http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/loose.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

Sections of an HTML Document92

Before going into each section of the document, it’ll be useful to see the
whole thing, so without further delay, Listing 1-1 shows an entire HTML
document.

Listing 1-1: A Basic Web Page
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<div>My Web Page</div>
</body>
</html>

If you view this document in a web browser, you receive a page that has a
title in the browser’s title bar or tab bar and text that states:

My Web Page

Later sections in the chapter explain how to enhance this page with more
HTML elements and more text.

The root element
Though not a section of an HTML document, the root element is what wraps
around the entire document, appearing as the first thing after the doctype
and the last thing in the document.

The root element is opened with:

<html>

The root element is closed with:

</html>

The head section and title element
The head section of a document contains information about the document
itself. The head section is opened with:

<head>

The head section is closed with:

</head>

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Sections of an HTML Document 93

The head section should not be confused with a header or menu on a page
itself. The head section is a behind-the-scenes element of a page.

The head section can contain a lot of information about the page. This
information includes things like the title of the page, the language of the
page (English, Spanish, French, Swedish, and so on), whether the page
contains style information or additional helper programs, and other such
things common to the page.

 These descriptive elements in the head section are sometimes called meta
elements because they’re common to the entire page or describe the page
itself.

 You should always have a title element inside the head section. The title
element is what shows up in the title bar of the web browser or as the title of
the tab in the web browser, shown in Figure 1-1.

Figure 1-1:
The title
element
shows up
in the tab
or title bar
of the web
browser.

Title elements should be descriptive of the
page contents but not overly so. Frequently
a title tag may have the site name along with
something descriptive about the page itself. For
example, www.braingia.org has “Steve
Suehring – Official Site and Blog,” and then
navigating to a given page, say the Books page,
results in the title changing to “Books | Steve
Suehring – Official Site and Blog.” The title is

therefore both descriptive of the page as well
as the site.

Page titles are used by search engines like
Google as one factor to help determine whether
your page is relevant, therefore placing it higher
in the search results. Google, for example,
displays up to 66 characters of the title tag. So
keeping the title short but sweet is key.

What makes a good title element?

http://www.braingia.org/

Creating Good HTML94

The body section
The body section is the heart of a web page. It’s where you place all the text
and images for the page. Essentially everything that you see when you view
a page (with the exception of the title) is found within the body section.

The body section opens with:

<body>

The body section closes with:

</body>

Just like the head section can contain other elements like the title and meta
information, the body section can contain several HTML elements as well.
For example, inside the body section you find all the link and image elements
along with paragraphs, tables, and whatever else is necessary to display the
page.

Later in this chapter, you see how to add links and images to a page. Next
you learn about the basic page elements found on a web page.

Creating Good HTML
A good web page is structured in a logical order. This means that you place
elements in a certain order so that they can be read properly by a web
browser and that any time you open an element you also close that element
using the corresponding tag that includes angle brackets and a forward
slash. Doing so ensures that the page will display like you want it to when
viewed in any web browser. Later in this chapter, you see how to check your
HTML document to make sure it’s structured correctly, but here we tell you
how to choose the appropriate elements for your needs.

Using the appropriate elements
Web pages frequently use several page elements, sometimes called tags.
Table 1-1 describes some of these elements.

Table 1-1 Common HTML Elements
Element Description Typical Use

<a> Anchor Creates a link to another page or a section
of the same document.

 Line break Enters a line break or return character.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 95

Element Description Typical Use

<div> A section of a
page

Creates overall areas or logical divisions on
a page, such as a heading/menu section, a
content area, or a footer.

<form> Web form Creates a web form to accept user input.
Covered in Chapter 3 of this minibook.

<h1>
through
<h6>

Heading Creates a container for a heading, such as
heading text.

<hr> Hard rule Creates a horizontal line.

 Image A container for an image.

<input> Input An element to accept user input. Covered in
Chapter 3 of this minibook.

<link> Resource link Links to a resource for the page; not to be
confused with an anchor element.

<p> A paragraph in
a page

Creates textual paragraphs or other areas
and containers for text.

<script> A script tag Denotes a web script or program. Also fre-
quently found in the head section.

 Span Creates a container for an element.
Frequently used in conjunction with styling
information.

Related to the structure or layout of the elements is a concept called
semantic markup, which is a fancy term to say that you always use the right
element at the right time. In other words, you use the right kind of element
to hold text and the right kind of element to add line breaks to a page.
Consider these benefits of semantic markup:

	 ✦	 Improves search results. A primary benefit of semantic markup is that
visitors and search engines alike can find the information they need.

	 ✦	 Simplifies maintenance. A secondary benefit to semantic markup is that
it makes maintenance easier later on.

When a page is both semantically correct and valid HTML, it is said to be
well-formed.

Putting text on a page
There are many ways to insert text into a web page and many elements that
are appropriate for holding text. Heading elements such as <h1>, <h2>,
through <h6>, are the correct place to put headings, while <p>, ,
and <div> are appropriate containers for longer form text, such as

Creating Good HTML96

paragraphs. Listing 1-2 shows a simple web page with two headings and
some paragraphs.

Listing 1-2: A Web Page with Headings and Paragraphs
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information about me.</p>
<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

When viewed in a web browser, this page appears like Figure 1-2.

Figure 1-2:
A simple
web
page with
headings
and
paragraphs.

As you can see from Figure 1-2, the information on the page includes an
<h1> element, followed by a paragraph, <p>. When the paragraph is closed
with </p>, another heading element, this time an <h2>, is found. When the
second heading is closed, </h2>, another paragraph is found.

It would’ve also been possible to substitute <div> elements in place of the
paragraph elements on the page.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 97

Creating your first page
Enough of us showing you HTML; it’s time for you to build a page. You can
create HTML with any text editor; in fact, it often is better to use a plain text
editor rather than an expensive HTML creation tool.

 It’s important to note that you should use a text editor and not a word
processor like Microsoft Word. Microsoft Word or a similar program like
Pages on a Mac add all sorts of extra formatting information that get in the
way of creating good HTML, even in their Save as HTML option.

Therefore, on Windows, use a program like Notepad. Even the Windows
program Wordpad can place extra formatting information in it. When it
comes to an HTML editor, the simpler the better.

The text editor included with Linux depends on the distribution of Linux
you’re using. One of your humble book authors’ (that would be Steve)
personal preference is for the command-line editor call Vi or Vim; a more
graphical experience is typically found with a program called gEdit — the
default text editor for Ubuntu.

Mac includes a program called TextEdit that can be used for creating plain
text documents — but be careful: The TextEdit program will attempt to save
files in Rich Text Format (RTF) by default. When creating or saving files with
TextEdit, select Plain Text from the File Format drop-down menu.

 This chapter focuses on the basics. Don’t worry that your web page
doesn’t look stylish. The next chapter explains how to style your page with
Cascading Style Sheets, or CSS.

Follow these steps to create your page:

 1. Open your text editor.

 See the preceding discussion about text editors. You want a text editor
that allows plain text without extra information.

 2. In the text editor, enter the following HTML.

<!doctype html>
<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<h1>My web page!</h1>
<p>Hello world, welcome to my web site</p>
</body>
</html>

 3. Save the file as firstpage.html.

Creating Good HTML98

 Save the file exactly as named, using lowercase throughout the name.
Later in the chapter, you can practice validating this file.

 Apache, the web server used to send the files to your browser, is case
sensitive for filenames, so sticking with lowercase will save you lots of
headaches. Make sure the extension is .html and not .txt or another
extension. Save the file to your document root, which is discussed in
Book I. The document root location depends on how you’ve installed
Apache and on what type of system you’re using.

 If you’re using a hosting provider, then this is the point where you
upload the file to their system.

 4. Open your web browser to load the page.

 In the web browser, point to http://localhost/firstpage.html.
When you do so, you’ll see a page like Figure 1-3.

Figure 1-3:
Your first
page,
viewed
through a
browser.

Choosing block-level or inline elements
When you’re considering which type of element to add to your page, think
about whether you’d like it to extend across the width of the page.

	 ✦	 Block-level elements: Both <div> and <p> elements are known as
block-level elements. A block-level element displays across the entire
width of the page; nothing can appear next to or alongside a block-level
element. Essentially, think of block-level elements as having a carriage
return after them.

	 ✦	 Inline elements: Certain elements, primarily the element, are
considered inline elements, which means that other elements can appear
next to them. In other words, inline elements don’t have a carriage
return after them.

http://localhost/firstpage.html

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 99

Inserting line breaks and spaces
There are times when you create a page and want to insert a line break. To
accomplish this action in a word processor, you simply press the Enter or
Return key on the keyboard. Things are not so simple in HTML. No matter
how many times you press Enter in an HTML document, the text will still
display on the same line in the web browser. Consider the code in Listing
1-3. It’s the same HTML as Listing 1-2, but has five extra carriage returns
inserted.

Listing 1-3: Trying to Insert Carriage Returns into HTML
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information about me.</p>

<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

When viewed through a web browser, the output is the same as Figure 1-2
earlier in the chapter. You see no blank lines between the first paragraph
and the second heading.

The same thing happens to extra spaces in HTML. No matter how many
times you press the space bar on the keyboard in a web document, the most
you’ll ever get is a single space. (We tell you more about how to add spaces
at the end of this section.)

The
 tag is used to insert line breaks into web pages. Look at the code
in Listing 1-4. Instead of using the Enter key (or Return on a Mac), the

tag is used to add carriage returns:

Listing 1-4: Using
 for Line Breaks
<!doctype html>
<html>
<head>

Creating Good HTML100

<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information
about me.</p>

<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

When viewed in a browser, the desired effect is shown, as illustrated in
Figure 1-4.

Figure 1-4:
Using

to insert
carriage
returns.

 You’ll sometimes see an extra slash in some tags like
 so they’ll be
written as
. This is a holdover from XHTML but is not necessary for
HTML5.

While we’re on the subject, you’ll also notice that
 doesn’t have a
closing partner, like a </br>. That’s ok. You can use
 as-is, without
worrying about having to close it.

Adding spaces to HTML is accomplished with the entity sometimes
written as . However, there are better ways to accomplish spacing

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 101

in HTML, chiefly through the use of Cascading Style Sheets (CSS). Therefore,
the use of the entity won’t be covered in favor of the more common
and more widely supported method through CSS — the topic in Chapter 2 of
this minibook.

Making your document easier to maintain
Developers frequently use comments to note behind-the-scenes information
about the page or about their code, and comments don’t display on the
web page. For example, a comment in a web page might be something like
“I added this on 10/19/2012” or “Added in support of our sales initiative.” If
you visit the web page, you can see those comments only by looking at the
page’s HTML file.

HTML comments are opened with this syntax:

<!--

HTML comments are closed with this syntax:

-->

Everything that appears from the beginning <!-- to the first --> is considered
part of the comment. Listing 1-5 contains an example HTML document with a
comment.

Listing 1-5: Adding an HTML Comment
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information
about me.</p>
<!-- Adding information about my books 10/1/2012 -->
<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

 HTML comments are visible by the world and should never be used to store
any information considered privileged or private.

HTML comments can span multiple lines, as in the example in Listing 1-6:

Creating Good HTML102

Listing 1-6: A Multi-line Comment
<!doctype html>
<html>
<head>
<title>My First Document</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Welcome to my web page. Here you’ll find all sorts of

information
about me.</p>
<!--
 Adding information about my books
 Date: 10/1/2012
-->
<h2>My Books</h2>
<p>You can find information on my books here as well.</p>
</body>
</html>

In this comment, you can see that the actual text of the comment is
indented, which brings up another important point: It’s helpful to use
indentation when creating documents. Documents are easier to read and
maintain later when elements are indented, so that way you can clearly see
visually which elements are “inside” of which other elements.

Adding lists and tables
Lists and tables help to represent certain types of information. For example,
a list of trees in Steve’s yard is best represented with a list like this:

Pine

Oak

Elm

But if he wants to include more information about the trees, a table is a
better format:

Tree Type Description

Pine A common tree in my yard.

Oak There are a few oaks in my yard.

Elm I have one Elm in my yard but it’s too close to the house.

AU
DI

A4
 up

loa
de

r

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L
Creating Good HTML 103

HTML has tags to create both lists and tables. Table 1-2 describes a variety
of such elements.

Table 1-2 Common List and Table Elements in HTML
Element Type Description

 List Item Used in conjunction with or to
create lists of information.

 Order List An ordered list of information, used in
conjunction with .

<table> Table Used with <tr>, <td>, and other elements
to create a table for presenting information.

<td> Table Cell Creates a cell in a table row.

<th> Table Header A table cell that’s a heading.

<tr> Table Row Creates a row of a table.

 Unordered List Related to and to create lists of
information.

When building a list, you have two choices of the type of list to create:
an ordered list or an unordered list. Ordered lists are used for things like
making an outline, while unordered lists make up pretty much every other
kind of list.

Listing 1-7 shows the HTML used to create a standard unordered list.

Listing 1-7: Creating an Unordered List
<!doctype html>
<html>
<head>
<title>An unordered list</title>
</head>
<body>

 Pine
 Oak
 Elm

</body>
</html>

Creating Good HTML104

When viewed in a browser, this HTML results in a page like that in Figure 1-5.

Figure 1-5:
An
unordered
list.

The unordered list created in Listing 1-7 uses the default styling for the list,
which adds bullets next to each item. You can also change the style of this
bullet or not include one at all using CSS. You learn more about CSS in the
next chapter.

Creating an ordered list means simply changing the element to .
Doing so looks like this:

 Pine
 Oak
 Elm

When viewed in a browser, the bullets from the preceding example are
replaced with numbers, as in Figure 1-6.

Other types of lists, such as definition lists, exist but aren’t covered here.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Practicing Creating a Table 105

Figure 1-6:
An ordered
list.

Practicing Creating a Table
It’s time to create a page with a table. Follow these steps:

 1. Open your text editor.

 See the preceding exercise for more information on text editors.

 2. In the text editor, create a new text document.

 Most text editors will open with a blank or empty document to begin
with. If you have anything in the document, clear it out before
continuing.

 3. Enter the following HTML:

<!doctype html>
<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<h1>My Table</h1>
<table>
 <tr>
 <th>Airport Code</th>
 <th>Common Name/City</th>
 </tr>

Practicing Creating a Table106

 <tr>
 <td>CWA</td>
 <td>Central Wisconsin Airport</td>
 </tr>
 <tr>
 <td>ORD</td>
 <td>Chicago O’Hare</td>
 </tr>
 <tr>
 <td>LHR</td>
 <td>London Heathrow</td>
 </tr>
</table>
</body>
</htm>

 4. Save the file as table.html.

 Save the file, as you did for the preceding exercise, with a .html
extension. The file should be saved in your document root. Refer to the
preceding exercise or Book I for more information on finding your
document root if you haven’t already found it for that exercise.

 5. View the file in your browser.

 Open your web browser and type http://localhost/table.html into the
address bar. Doing so will show a page like the one in Figure 1-7.

Figure 1-7:
The table
you created
for this
exercise.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Practicing Creating a Table 107

 Notice that the table doesn’t have any borders around it. If you’d like to
add borders, keep working through this exercise. Otherwise, continue to
the next section.

 6. Open table.html in your text editor.

 If you closed your text editor, open it again and load table.html.

 7. Change the code in table.html to the following:

<!doctype html>
<html>
<head>
<title>My First Web Page</title>
</head>
<body>
<h1>My Table</h1>
<table border=”1”>
 <tr>
 <th>Airport Code</th>
 <th>Common Name/City</th>
 </tr>
 <tr>
 <td>CWA</td>
 <td>Central Wisconsin Airport</td>
 </tr>
 <tr>
 <td>ORD</td>
 <td>Chicago O’Hare</td>
 </tr>
 <tr>
 <td>LHR</td>
 <td>London Heathrow</td>
 </tr>
</table>
</body>
</html>

 Note that the only change is to add a space and then border=”1”
within the <table> element.

 8. Reload table.html in your browser.

 If you closed your browser, reopen it and go to http://localhost/
table.html. If your browser is still open, press Ctrl+R to refresh the
page (Command+R on a Mac). You now see a border around the table,
as in Figure 1-8.

http://localhost/table.html
http://localhost/table.html

Including Links and Images on Your Web Page108

Figure 1-8:
A table with
borders
around each
cell.

This is a rather primitive way to add a border to a table. A better way to
accomplish this task is by using CSS, which you learned about briefly in
Book I. Chapter 2 of this minibook covers CSS in much more detail, too.

 When you added border=”1” to the <table> element, you added
something called an attribute. An attribute helps to further describe or define
the element or provides additional details about how that element should
behave.

Including Links and Images on Your Web Page
What would the web be without links — and images too? Not much of web at
all. Links are the items that you click on inside of web pages to connect to or
load other pages, and when we talk about images, we mean both illustrations
and photos. This section looks at how to add links and also images to your
web page.

Adding links
Links are added with the <a>, or anchor element. The href attribute tells
the anchor element the destination for the link. The destination can be just
about anything, from another web page on the same site, to a different site,
to a document or file, to another location within the same web page. The
link itself can be added to just about anything on the page. For example, you
might link each of the trees mentioned in the previous section to articles
about each of those types of trees.

When something is linked, the browser typically gives visual feedback that
there’s a link by highlighting and underlining the linked area. You’ll see an

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 109

example of this shortly. Like other HTML elements, the <a> element has a
corresponding closing tag that is used to tell the browser when to stop
highlighting and underlining the link.

Linking to other pages
Linking to other pages, whether on the same site or at a different site, is
accomplished in the same way. For example, look at the following HTML:

<p>Here’s a link to Steve
Suehring’s site</p>

This line uses a paragraph element <p> to create a sentence, “Here’s a link
to Steve Suehring’s site.” This being the web, you decide to actually provide
a link so that visitors can click on certain words and be transported to that
page. You do so with the <a> element along with the href attribute. In this
case, the <a> element looks like this:

The href attribute points to the URL http://www.braingia.org and is
enclosed in quotation marks. The text that will be highlighted then appears,
followed by the closing tag.

Here’s an exercise for implementing this link.

 1. Open your text editor.

 You use your text editor to create a new file, so there should be nothing
in the text editor except a blank document or file.

 2. In the text editor, place the following HTML:

<!doctype html>
<html>
<head>
<title>Link</title>
</head>
<body>
<p>Here’s a link to <a href=”http://www.braingia.

org”>Steve Suehring’s site</p>
</body>
</html>

 3. Save the file as link.html.

 The file should be saved to your document root with the name link.html.

 4. Open your browser and view the page.

 Open your web browser and point to http://localhost/link.html
by entering that URL into the address bar. You’ll see a page like that in
Figure 1-9.

http://www.braingia.org/
http://localhost/link.html

Including Links and Images on Your Web Page110

Figure 1-9:
A page with
a link.

 Always close <a> elements with a corresponding closing tag. A frequent
mistake is to leave the <a> element open, resulting in all the text that follows
to be highlighted as a link.

The example and exercise show how to link to a page on a different website.
Creating a link to a page on the same site is accomplished in the same
manner, but rather than including the Uniform Resource Identifier (URI)
scheme and the hostname (the http://www.braingia.org part from this
example), you can just link to the page itself.

If you’ve been following along with previous exercises, then you should have
a page called table.html. Here’s HTML to create a link to table.html.
The preceding exercise’s HTML is included so that you can see the overall
context for the link:

<!doctype html>
<html>
<head>
<title>Link</title>
</head>
<body>
<p>A link to the table example</p>
</body>
</html>

Like before, the link is contained within a <p> element but note the href
attribute now points merely to table.html.

 Avoid spaces in filenames and in web URLs in general. Spaces are generally
not friendly to URLs, in filenames, or in images. Though they can be worked
around, you’ll have much more success if you always simply avoid spaces
when naming things for the web.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 111

Linking within a page
Sometimes you want to link within the same page. You might do this on a
particularly long page, where you have a table of contents at the top and
then the full article lower down in the page.

Creating withinpage links uses the same <a> element that you’ve seen, this
time with the name attribute. Listing 1-8 shows HTML to create a within-page
anchor.

Listing 1-8: An In-Page Anchor
<!doctype html>
<html>
<head>
<title>Link</title>
</head>
<body>

 Pine
 Oak
 Elm

The link shown in the preceding example is
called a relative link because it does not begin
with either the Uniform Resource Identifier
(URI) scheme (http://) or a beginning front
slash (/). A relative link assumes that the
target (table.html in the example) is in
the same directory or folder as the document
or page from which it’s linked. In the case of
the example, a relative link works because
the current page, link.html, and the page
being linked, table.html, both exist in the
document root.

If both pages were not in the same directory (in
other words, if table.html was in a folder
called tables in the document root and the
link.html file was in a folder called links

in the document root), then you would need to
create an absolute link. An absolute link tells
the server exactly where to look to find the
target. For example, an absolute link might look
like /tables/table.html. This link tells
the server that it needs to begin looking in its
document root for a directory called tables
and that it should then find a file called
tables.html in the tables directory.

Use absolute links when you need to provide
exact or absolute references to the target
being linked. Use relative links when the
resource being linked will always be found
in the same place relative to the page linking
to it. If the location of the page or the target
changes, then relative links will stop working.

Understanding absolute versus relative links

Including Links and Images on Your Web Page112

<p>Pine trees are abundant in my yard.<p>
<p>There are a few oak trees in my yard.<p>
<p>There’s one elm in my yard.<p>
</body>
</html>

In Listing 1-8, the href tags added to each of the list items use a pound or
hash sign (#). This is the key used to tell the browser that the resource will
be found on the same page. Then later on in the HTML you see another <a>
element, this time using the name attribute. That name attribute
corresponds to each of the href attributes from earlier in the page.

That’s it! There’s nothing more to adding in-page links. You merely need to
use the pound sign to indicate that the resource is found later on the page
and then use the name attribute to make another element match that.

Opening links in a new window
Sometimes you want to make a link open in a new tab or a new window.
When a visitor clicks a link that’s defined in such a way, the browser will
open a new tab and load the linked resource in that new tab. The existing
site will still be open in the visitor’s browser, too.

Don’t make every link open in a new window. You should do so only where
it makes sense, as might be the case where a visitor is in the middle of a long
process on your website and needs to link to reference another resource
or site, like a directory of ZIP codes or a terms of service agreement. Also,
whether the link opens in a new tab or a new window is dependent on the
browser; you can’t control it.

This can be done by adding the target attribute to your <a> element with
a special value, _blank. For example, an earlier example showed how to
create a link to Steve’s website, www.braingia.org. Recall that the link looked
like this:

Steve Suehring’s site

To make this link open in a new window, you add the target=”_blank”
attribute/value pair to the element, so it looks like this:

Steve
Suehring’s site

You can try this out by opening the link.html file from the earlier exercise
and adding target=”_blank” as shown. Note the use of the underscore
preceding the word blank. When you save the file and reload that page
(Ctrl+R or Command+R), the link won’t look any different. However, clicking
the link will open a new tab (or new window, depending on your browser
and configuration).

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 113

Adding images
Images, such as photos or graphics, enhance the visual appeal of a web
page. Images are usually embedded in a page, such as shown in Figure 1-10,
where a photo of the cover of another of Steve’s books, MySQL Bible (John
Wiley & Sons, Inc.), is shown.

Figure 1-10:
An image on
a web page.

You can include images from anywhere, assuming that you have the legal
rights to do so. In other words, you can store the image on your web server
or you can include an image stored on someone else’s web server. (But we
repeat: First, make sure you don’t violate any copyright!)

There’s also another, special type of image, called a background image.
Background images provide the background for the page itself. Chapter 2 of
this minibook covers background images.

Referencing the image location
Images are added with the element. Just as with the <a> element, the
 element uses an attribute to tell the browser more information about
itself. The src attribute is used to tell the browser where to find the image.
Earlier, in Figure 1-10, you see an image of a book cover. The HTML to bring
that image into the page looks like this:

As you can see, the element adds the src attribute, which then
references where to find the image on the web server.

Including Links and Images on Your Web Page114

You might notice that the element doesn’t have a closing tag.
That’s because this element doesn’t have its own content, unlike the <p>
and <a> elements — which both need content to go within them and
therefore need to be closed. You may sometimes see an element like
closed with /> instead of just >, as in the example. Both are acceptable and
valid ways to close this type of element.

The element should always have an alt attribute. The alt attribute
tells search engines and assistive technologies about the image being used.
When used with an element, the alt attribute looks like this:

You should use a short description as the contents of the alt attribute.
Using something like “MySQL Bible was a great book and everyone should’ve
purchased one” doesn’t describe the image, but “MySQL Bible” does.

Choosing good web images
When choosing an image for the web you need to look at more than just
making sure no one blinked when the photo was taken. You should also
consider the image’s height and width, the size of the file, and its format.
Web browsers can view images formatted in numerous formats, including
JPG, GIF, and PNG, as well as several others.

The height and width of the image are up to you and depend on the needs of
your page. For example, Steve needed a special sized file in order to display
the MySQL Bible book cover. He used image manipulation software in order
to resize the image for his needs. Many image manipulation and image
processing software programs are available. Adobe Photoshop and Gimp are
among the most popular ones.

File size is arguably one of the most important aspects for your consideration
when choosing an image. When you include large images, such as those
taken at the high-quality setting with your digital camera, visitors have to
download the file, which can take an extraordinarily long time depending on
the speed of the visitors’ connection. If they’re visiting from a dial-up modem
or slower connection, then an image that’s 4 megabytes (MB) may take
20 minutes to load! This is also true with today’s mobile devices, on which
the speeds may be slower and a visitor using such a device may have to pay
data download fees.

To get around this, you can resize your images using the aforementioned
software. Resizing images to under 100 kilobytes (KB) is important. Another
important aspect to consider is the sum of all images on the page. For
example, if you have 15 images at 100KB each, then you’re requiring the
visitor to download 1.5MB worth of images — which is likely too much for
many visitors. If the page seems slow to load, they may go elsewhere rather
than wait.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Including Links and Images on Your Web Page 115

When you’re choosing an image format, know that if you choose one of the
three formats mentioned earlier (JPG, GIF, and PNG), you ensure that the
widest possible audience can view the image without needing special
software to do so.

Keep the sum of all images in mind when sizing the images for your page so
that the page downloads faster for the visitor.

Creating a page with an image
It’s time to create a page with an image so that you can see how and where
an image fits within the larger whole of an HTML page. Follow these steps.

1. Open your text editor.

See the previous discussion about text editors.

2. In the text editor, enter the following HTML.

<!doctype html>
<html>
<head>
<title>A snowy picture</title>
</head>
<body>
<h1>A snowy picture</h1>
<p></p>
</body>
</html>

When you create this HTML you need to use a photo or other picture of
your own or you can use the snow.jpg file included in the companion
content of this book. Regardless of the picture you choose, you need to
place the file in the document root of the web server (discussed in Book
I). Also, make sure that case (uppercase and lowercase) for the filename
matches what you put in the src attribute. In other words, if your picture
is called TheKids.JPG, then the src attribute should be “TheKids.JPG”.

3. Save the file as image.html.

Save the file exactly as named, using lowercase throughout the name.
The file should be saved to your document root, which is discussed in
Book I. The document root location depends on how you’ve installed
Apache and on what type of system you’re using. If you’re using a
hosting provider, then this is the point where you upload the file to that
host provider’s system.

4. Open your web browser to load the page.

In the web browser, point to http://localhost/image.html. When
you do so, you’ll see a page like Figure 1-11.

AU
DI

A4
 up

loa
de

r

http://localhost/image.html

Writing Valid HTML116

Figure 1-11:
Adding an
image to a
page.

This HTML used an element to load a photo called snow.jpg from
the current directory. In other words, snow.jpg was in the same directory
as the image.html page on the web server.

 Avoid spaces in image filenames, just as you would for regular files and
other URLs. Remember also that URLs, files, and images are case sensitive.

Writing Valid HTML
When you create a web page with HTML, there are certain rules to follow
in order to make sure that web browsers can read and display the page
correctly. HTML and its rules are discussed in the first minibook included in
this guide. The current version of the HTML specification is HTML version 5,
known simply as HTML5.

The process of validating a page means that a specialized website examines
the HTML code that you write and compares it to the specification for that
version of HTML. In the case of the HTML that you’re writing for this book
you are using HTML5.

The website used to validate HTML is called the W3C Markup Validation
Service (frequently called the W3C Validator) and is operated by the World
Wide Web Consortium (W3C). The W3C Validator is found at http://
validator.w3.org and is free to use. Figure 1-12 shows the W3C Validator.

http://validator.w3.org/
http://validator.w3.org/

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Validating Your HTML 117

Figure 1-12:
The W3C
Markup
Validation
Service,
sometimes
simply
called the
Validator.

Validate your HTML in one of three ways:

	 ✦	 Providing a URL: You can enter a URL into the Validator and it will
automatically retrieve the HTML at that URL and attempt to validate it.
In order for the Validator to retrieve your HTML using this method, the
page needs to be available to the public. This is usually not the case
when you’ve installed a web server on your computer, as discussed in
this book. If you’re using an external hosting provider, then your site
and pages may be available to the Internet. In that case, you can enter
the URL in the “Validate by URI” address box.

	 ✦	 Uploading a file: You can upload a file using the “Validate by File
Upload” option. Using this method, you choose a file on your computer.
That file is then uploaded to the Validator.

	 ✦	 Pasting HTML into the Validator: This means copying the HTML from
your text editor and pasting it into the “Validate by Direct Input” tab in
the Validator. This option is typically the fastest and easiest method and
it’s the one that we show in this section.

Validating Your HTML
If you’ve followed the exercises in this chapter, then you’ve built some
HTML. The next exercise uses the W3C Validator to make sure that the
HTML you’ve written is valid according to the HTML5 specification. Follow
these steps:

 1. Open firstpage.html using your text editor.

Validating Your HTML118

 This page was the first one you created in this chapter. However, if you
skipped that exercise, open any one of the HTML files that you created
in this chapter.

 2. Highlight/select all the HTML in the open file.

 Use your mouse or pointing device to highlight all the HTML or press
Ctrl+A on Windows or Command+A on Mac.

 3. Copy the HTML to your clipboard.

 Select Copy (found in the Edit menu in most text editors) or press Ctrl+C
on Windows or Command+C on Mac to copy the highlighted HTML to
the clipboard.

 4. Open your web browser and navigate to the W3C Validator.

 With the browser open, type http://validator.w3.org in the address or
location bar in the browser and press Enter to go to the Validator.

 5. Select Validate by Direct Input.

 The Validate by Direct Input tab will be used to paste in the code in your
clipboard.

 6. Paste the HTML into the Validator.

 Press Ctrl+V on Windows or Command+V on Mac to paste the HTML
from the clipboard into the Enter the Markup to Validate box on the
Validator page. If you’re using the HTML from firstpage.html, your
screen should look similar to that in Figure 1-13.

 7. Click Check.

 Click the Check button on the Validator page to run the validation of
your HTML. You should receive a page similar to that in Figure 1-14.

Figure 1-13:
Pasting
HTML
into the
Validator.

Book II
Chapter 1

Creating a Basic
Page w

ith HTM
L

Validating Your HTML 119

Figure 1-14:
A valid
HTML
document
passed
through the
Validator.

Notice the three warnings in this validation. Scrolling down reveals that one
of the warnings is that the HTML5 validator is actually experimental at this
time, though that may change by the time you read this. The other two
warnings are related to language settings.

It’s good practice to include the character encoding, which helps the
browser determine how to read the document, including what lan-
guage is used for the HTML and the page. See http://www.w3.org/
International/tutorials/tutorial-char-enc/#Slide0250 for
more information on character encoding.

120 Book II: HTML and CSS

Chapter 2: Adding Style with CSS
In This Chapter
✓ Finding out what styling the page means

✓ Exploring different methods of using CSS

✓ Selecting certain elements for styling

✓ Changing fonts and adding borders

✓ Adding list styles

✓ Modifying backgrounds

✓ Working with layout

✓ Adding a header and footer

I
n the preceding chapters, you learn a little about a lot and a lot about a
few things. Namely, you learn how to install a web server and a database

system and you learn a little about HTML. Although HTML is used to add
text to a page, that text is pretty boring; it needs some style. Enter CSS.

In this chapter, you learn what Cascading Style Sheets (CSS) is and how to
use it for various layout and style purposes. We recommend that you work
through the chapter from beginning to end, because some exercises build
on previous exercises.

Discovering What CSS Can and
Can’t Do for Your Web Page

This section looks at CSS from a high level to give you a foundation on
which you’ll learn how to use CSS on your website.

What is CSS?
CSS complements HTML by providing a look and feel to web pages. The
HTML pages you created in the preceding chapter looked fairly plain, with
a default font and font size. Using CSS, you can spice up that look, adding
color and background images, changing fonts and font sizes, drawing
borders around areas, and even changing the layout of the page itself.

Discovering What CSS Can and Can’t Do for Your Web Page 122

CSS has its own language, separate from HTML, but you wouldn’t use CSS
without the HTML page. In other words, although HTML can stand on its
own and present a page to a browser, CSS can’t. You wouldn’t write a CSS
page. Rather, you write HTML and then use CSS to help style that page to get
it to look like you want it to.

 Like HTML, CSS is defined by specifications, with the latest being CSS
version 3, known as CSS3.

Why use CSS?
Before CSS, an HTML developer changed fonts and colors by changing
attributes on each element. If the developer wanted all the headings to look
a certain way, he had to change each of those headings. Imagine doing this
on a page with ten headings, and then imagine doing it on 50 pages. The task
quickly becomes tedious. And then think of what happens when the site
owner decides she wants all the headings changed back to the original way.

CSS alleviates this burden of individually updating elements and makes it so
that you can apply one single style across one or more elements. You can
apply multiple styles to the same element, and you can target a certain style
down to the individual element. For example, if you want all headings to be
bold font but a certain heading should have italic, you can do that with CSS.

Use CSS to make changes to the layout, look, and feel of a web page. CSS
makes managing these changes easy.

Limitations of CSS
CSS isn’t without limitations. The primary limitation of CSS is that not all web
browsers support CSS in exactly the same way. One browser might interpret
your layout in a slightly different manner, placing items higher or lower or in
a different place entirely.

Also, older browsers don’t support newer versions of CSS, specifically the
CSS3 specification. This means that those browsers can’t use some of the
features of the CSS3 specification. To get around this, you can use older
versions of the specification that are more widely supported by those older
browsers.

The key when using CSS and, as you see later, when using JavaScript, is to
test across multiple browsers. Web browsers such as Firefox, Chrome, and
Safari are all free downloads, and Microsoft offers software called the Virtual
PC for Application Compatibility, which are free, time-limited, versions of
Windows that include older versions of Internet Explorer. You can run them
inside of Microsoft’s free Virtual PC emulation software. By testing in other
browsers, you can see how the site will look in those browsers and correct
layout issues prior to deploying the site to the Internet.

Book II
Chapter 2

Adding Style w
ith

CSS
Connecting CSS to a Page 123

Always test your pages in multiple browsers to ensure that they look and act
like you intended.

Connecting CSS to a Page
You can add CSS to a page in a few different ways:

	 ✦	 Directly to an HTML element

	 ✦	 With an internal style sheet

	 ✦	 With an external style sheet

The most reusable way to add CSS to a page is by using an external style
sheet, but the simplest is to add styling information directly on an element.
We show each of these methods.

Adding styling to an HTML element
You add style to just about any HTML element with the style attribute, as in
this example that makes all the text in the first paragraph into bold font:

<p style=”font-weight: bold;”>All of this text will be
bold.</p>

When viewed in a browser the text is bold, as shown in Figure 2-1.

Figure 2-1:
Bold text
styled
with CSS.

In Figure 2-1, the paragraph with bold text appears above a normal
paragraph. That normal paragraph doesn’t use CSS for styling.

Connecting CSS to a Page124

 When a style is applied within an HTML element, it’s called an inline style or
inline CSS.

Here’s an example that you can try. You build some HTML first and then
begin to add styling to it.

 1. Open your text editor.

 Create a new blank file. See Chapter 1 of this minibook for more
information on text editors and creating a new text document.

 2. Within the blank text document, place the following HTML:

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
</head>
<body>
<div>This is my web page.</div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div>Here is some text on my page.</div>

</body>
</html>

 3. Save the file as css.html.

 Within the text editor, save the file using the name css.html, making
sure there are no spaces or other characters in the filename. The file
should be saved within your document root.

 4. Open your web browser and view the page.

 Within the web browser’s address bar, type http://localhost/css.html
and you’ll see a page similar to that shown in Figure 2-2.

 5. Close the browser.

 Now that you’ve verified that the page is working, close the browser.

 6. Switch to the text editor to edit the HTML.

 Within the text editor, edit the HTML from Step 2 to add CSS. If you
closed the file, reopen it in your text editor.

Book II
Chapter 2

Adding Style w
ith

CSS
Connecting CSS to a Page 125

Figure 2-2:
Creating a
simple web
page.

7. Change the HTML to add two different style attributes, as shown here:

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
</head>
<body>
<div style=”font-weight: bold;”>This is my web page.</

div>

<div>
 This is the <span style=”font-style:

italic;”>nicest page I’ve made yet.
</div>

<div style=”font-weight: bold;”>Here is some text on my
page.</div>

</body>
</html>

8. Save the file.

You can save it as css.html or save it as css2.html if you don’t want
to overwrite your original css.html file. The file should be saved in
your document root.

AU
DI

A4
 up

loa
de

r

Connecting CSS to a Page126

 9. Open your web browser and view the page.

Typing in http://localhost/css.html (or css2.html if you saved it as css2.
html) reveals the file, now with inline styles applied to two areas. This is
illustrated in Figure 2-3.

Figure 2-3:
Adding
inline styles
to the
HTML.

This exercise created an HTML file that used both <div> and
elements. The HTML was then styled using inline styles. The inline styles
adjusted both the font-weight and the font-style to create bold text
for two elements and italic text for one element.

When used with CSS, font-weight and font-style are known as properties.
These properties are then given values, such as bold and italic. When you
see terminology that a CSS property was changed, you know that the
property is the name and that the value is what to change that property to.

Using an internal style sheet
Applying styles to individual elements quickly becomes cumbersome when
you have a large web page. As you see in the preceding exercise, in order
to make the text of the two <div> elements bold you needed to add a style
attribute to each of the <div> elements. Luckily, there’s a better way.

You can create a special area of the web page to store styling information.
This styling information is then applied to the appropriate elements within
the HTML. This alleviates the need to add a style attribute to each element.

Book II
Chapter 2

Adding Style w
ith

CSS
Connecting CSS to a Page 127

You add internal styles within the <head> portion of a web page using the
<style> element. Listing 2-1 shows HTML with a <style> element.

Listing 2-1: Using an Internal Style Sheet
<!doctype html>
<html>
<head>
 <title>A CSS Exercise</title>
 <style type=”text/css”>
 div {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }
 </style>
</head>
<body>
<div>This is my web page.</div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div>Here is some text on my page.</div>

</body>
</html>

The page adds an internal style sheet to add a bold font to <div> elements
and an italic styled font to all elements in the page.

<style type=”text/css”>
 div {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }
 </style>

The <style> element uses a type attribute to tell the browser what type of
styling information to expect. In this case, we’re using text/css type
styling. Notice also the closing tag, which is required.

Connecting CSS to a Page128

When this page is viewed in a browser, it displays like that in Figure 2-4.

Figure 2-4:
Using an
internal
style sheet.

Look closely at Figure 2-4; notice the slight difference with the display from
Figure 2-3. In Figure 2-3, the second line (“This is the nicest page I’ve made
yet.”) is not bold, but the line appears in a bold font in Figure 2-4.

This difference is present because the internal style sheet targets all <div>
elements in the page rather than just the specific ones that were changed
with the inline style method shown earlier. The next section, “Targeting
Styles,” shows how to fix this.

Using an external style sheet
You’ve seen how inline styles, adding styling information to each element
individually, can become tedious. You then saw how to use an internal
style sheet to create styling information for the page as a whole. But what
happens when you have 10 pages or 100 pages, all needing styling?

You can use external style sheets to share CSS among multiple pages. An
external style sheet, just another type of text document, can be included on
every page. The browser reads this external style sheet just as it would read
styles applied within the page itself, and applies those styles accordingly.

You add or include an external style sheet with the <link> element, which
goes in the <head> area of an HTML page.

Book II
Chapter 2

Adding Style w
ith

CSS
Targeting Styles 129

A typical <link> element to add CSS looks like this:

<link rel=”stylesheet” type=”text/css” href=”style.css”>

That’s it. That line includes a file called style.css in the current directory
and incorporates it into the page. All the <style> information and inline
styling can be removed in place of that one single line in the <head> section
of the page.

Inside the external style sheet are the rules to apply — and only the rules to
apply. You don’t need to include the style attribute or even an opening or
closing <style> element within an external style sheet. Looking back at the
example in Listing 2-1, the external style sheet would contain only this
information:

 div {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }

Now that external style sheet can be shared among multiple HTML files.
If you need to make a change to styling, you need to edit only the one CSS
file, and it automatically applies the styles to all the pages that use that CSS
file. As you can see, external CSS files make maintenance of websites much
easier.

External style sheets are the recommended method for using CSS, and with
only a few exceptions, the remainder of the book uses CSS included from an
external style sheet.

Targeting Styles
Recall the problem identified earlier, where the bold font was applied to all
the <div> elements on the page, when you might not necessarily want to
apply it to all those elements. You can fix that problem by targeting or
narrowing down the scope of the CSS rule using a more specific selector.

CSS uses selectors to determine the element or elements to which a rule will
be applied. In the internal style sheet example earlier in this chapter, the
selector was the <div> element, or all <div> elements on the page. In this
section, we tell you how to select specific elements, and groups of elements,
so that you can apply CSS styles to them.

Targeting Styles130

Selecting HTML elements
Most any HTML element can be the target of a selector, even things like the
<body> element. In fact, the <body> element is frequently used as a selector
in order to target page-wide styles, such as what set of fonts to use for the
page. You see an example of this in the next section, “Changing Fonts.”

You’ve already seen examples using HTML elements as selectors. You
simply use the element name, with no brackets around it. Instead of <div>
as it would be in HTML, you use div when using it as a CSS selector. Here’s
what that looks like:

 div {
 font-weight: bold;
 }

As you can see, the name of the element, div, is followed by a brace. This
indicates that the rule is beginning. Within the opening and corresponding
closing brace, the property, font-weight, is selected, followed by a colon
(:). The value is then set to bold. The line is terminated with a semicolon
(;). This semicolon tells the browser that the line is done; in other words,
the property/value pair are closed.

Multiple properties can be set in the same selector. Taking the preceding
example, you could change the font’s style to be both bold and italic, like
this:

 div {
 font-weight: bold;
 font-style: italic;
 }

Each line is ended with a semicolon, and the entire rule is enclosed in
opening and closing curly braces.

Selecting individual elements
What you’ve seen so far in this section is that you can target all HTML ele-
ments by simply using their names. You’ve been seeing examples of that
throughout the chapter. But what happens when you want to target one, and
only one, element on a page? That’s where the id selector comes into play.

The id (short for identifier) enables you to select one and only one element
within a page. To do so, you need to modify the HTML to add an id attribute
and provide a name for that element. For example, consider an HTML like
this:

<div>Steve Suehring</div>

Book II
Chapter 2

Adding Style w
ith

CSS
Targeting Styles 131

If you want to apply a bold font to that element, you could select all <div>
elements but that would likely also apply a bold font to other <div>
elements on the page, as you’ve already seen. Instead, the solution is to add
an id to that particular <div>, like so:

<div id=”myName”>Steve Suehring</div>

The id’s value is set to myName. Note the case used in this example, with an
uppercase N. This case should be matched in the CSS.

To select this id within the CSS, you use a pound sign or hash character (#),
like so:

#myName

With that in mind, making the #myName id bold looks exactly like the
examples you’ve already seen, just substituting #myName for div:

 #myName {
 font-weight: bold;
 }

Always match the case that you use in the HTML with the case that you use
in the CSS. If you use all uppercase to name the ID in the HTML, then use all
uppercase in the CSS. If you use all lowercase in the HTML, use lowercase
in the CSS. If you use a combination, like the example, then match that
combination in the CSS.

When using IDs in HTML, it’s important to realize that the ID should be used
once and only once across an entire page. It’s fine to use the same ID in
different pages, but the ID should appear only once within a page.

We can hear your protest now: “But what if I need to apply the same style to
more than one element?” That’s where a CSS class comes in.

Selecting a group of elements
You’ve learned how to target HTML elements across a page and you’ve
learned how to target just one individual element. A CSS class is used to
select multiple elements and apply a style to them.

Unlike the selection that occurs when you select all <div> elements, a CSS
class is applied only to the specific elements that you choose. The HTML
elements don’t even need to be of the same type; you can apply the same
CSS class to a <div>, to an tag, and to a <p> element alike.

Targeting Styles132

Like an id, a class is applied first to the HTML elements with an attribute.
The attribute is the aptly titled class, as in this example:

<div class=”boldText”>This text has a class.<div>

As in the id example, the class is also case sensitive. The case used in the
HTML should match that in the CSS.

Whereas an ID selector uses a pound sign (#) in the CSS, a class uses a single
period or dot. In the preceding example, where the class is named boldText
in the HTML, it would be referenced like this in the CSS:

.boldText {
/* CSS Goes Here */
}

In this example, the class boldText is selected.

Classes can be used to solve the problem discovered earlier in Figure 2-4 (in
the “Using an internal style sheet” section), where the bold font was applied
to all the <div> elements because the CSS used the div selector. You can
use a class in the HTML to target only those elements that you want to
target.

It’s time to test that theory. Follow these steps.

 1. Open a text editor.

 2. Open css.html.

 Open the file that you created in a previous exercise. You may have
named it css2.html.

Within the CSS rule shown nearby, there’s a
comment: /* CSS Goes Here */. Just
like in HTML where you can use comments to
help explain a certain piece of code, so too can
you use comments in CSS to help explain the
CSS. Like HTML comments, comments in CSS
are not visible in the output of the page but,

also like HTML comments, CSS comments are
viewable by viewing the source of the HTML or
CSS document itself. This means that visitors
can see the comments too!

Comments in CSS are opened with /* and
closed with */. Everything appearing between
/* and */ is treated as a comment.

CSS comments

Book II
Chapter 2

Adding Style w
ith

CSS
Targeting Styles 133

 3. Make changes to css.html to remove the CSS.

 The page should look like this:

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
<link rel=”stylesheet” type=”text/css” href=”style.

css”>
</head>
<body>
<div class=”boldText”>This is my web page.</div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div class=”boldText”>Here is some text on my page.</
div>

</body>
</html>

 4. Save the file.

 You can save it as css.html or rename it to css3.html. Save the file in
your document root.

 5. Create a new empty text file.

 Using your text editor, create a new empty file.

 6. Place the following CSS in the file.

 .boldText {
 font-weight: bold;
 }

 span {
 font-style: italic;
 }

 7. Save the file.

 Save the file as style.css within your document root. Note that you
should ensure that the file is named with all lowercase and has the
correct file extension, .css.

 8. Open your browser and view the css.html file.

 Type http://localhost/css.html in the browser’s address bar. If you save
the file as css3.html, then use that instead of css.html. The output
should look like that in Figure 2-5.

Changing Fonts134

Figure 2-5:
A page with
an external
style sheet.

Notice that the page in Figure 2-5 looks exactly like Figure 2-3. That’s what
we hoped would happen! This exercise implemented an external style sheet
and used a CSS class to target the bold font-weight to only those elements
that we wanted to be bold.

Changing Fonts
So far you’ve seen a good amount of changing font weight to make fonts
appear bold and a little about font styling to make the font appear in italics.
However, you can do a lot more with fonts on the web using CSS, including
choose a font family and select font sizes and color.

Setting the font family
The term font family describes the typeface or look of the font used for the
text. The font family can be changed using CSS but there’s a huge limitation:
The fonts you use need to also be available on the visitor’s computer. In
practical terms, this means that you have to use certain “web friendly” fonts
that appear on most visitors’ computers. It also means that you can’t always
guarantee what font the visitor will see. If a visitor doesn’t have the font that
you specify, that visitor’s browser chooses a substitute.

The CSS property for the font is called font-family. When setting a font,
the best practice is to provide a list of fonts from which the browser can
choose, as in this example:

font-family: arial, helvetica, sans-serif;

Book II
Chapter 2

Adding Style w
ith

CSS
Changing Fonts 135

You can set the recommended fonts for the entire HTML page by using the
selector for the <body> element, as in this example:

body {
 font-family: arial, helvetica, sans-serif;
}

Any page that uses that CSS rule will attempt to display its text first with the
Arial font. If that font isn’t available, the Helvetica font is used next. If that
font isn’t available, then a sans-serif font is used. If none of those are
available, then the browser chooses a font to use all on its own.

Common values for font-family are

arial, helvetica, sans-serif

“Arial Black”, Gadget, sans-serif

Georgia, serif

“Times New Roman”, Times, serif

 A concept called Web Fonts enables the use of additional fonts by allowing
the browser to download the preferred fonts as part of the page. This
concept is discussed at www.html5rocks.com/en/tutorials/webfonts/
quick.

Listing 2-2 shows the CSS that you saw in an earlier example. This listing
adds the font-family CSS property to the body of the page, meaning that
this font-family setting will be applied across the entire page.

Listing 2-2: Setting the Font-Family Value with CSS
body {
 font-family: arial,helvetica,sans-serif;
}

.boldText {
 font-weight: bold;
}

span {
 font-style: italic;
}

When viewed in a browser using the same HTML from the preceding
exercise, the result looks like Figure 2-6.

/\san\homedata\SteveDocs\Agency_And_Writing\webdevaio\tr\www.html5rocks.com\en\tutorials\webfonts\quick
/\san\homedata\SteveDocs\Agency_And_Writing\webdevaio\tr\www.html5rocks.com\en\tutorials\webfonts\quick

Changing Fonts136

Figure 2-6:
Changing
the font
family
with CSS.

Setting font size
How large the text appears on a web page is its font size. You can set font
sizes using the font-size CSS property. Font sizes can be set in one of four
units:

✦	 Percentage

✦	 Pixels

✦	 Points

✦	 Em’s

Which of those you should use depends largely on whom you ask. If you
ask four web developers which one to use, you’ll probably get four different
answers. You can read the sidebar for more information, but this book uses
either percentage or em’s. If you’re asking why, the short answer is that both
of those methods work well for mobile devices and other scenarios where
visitors may want to scale the text size according to their needs.

Em’s are a unit of sizing for fonts, much like points that you see in a word
processor.

Font sizes are set like any other CSS property; for example, this sets the font
size to 150% of its normal size:

font-size: 150%;

AU
DI

A4
 up

loa
de

r

Book II
Chapter 2

Adding Style w
ith

CSS
Changing Fonts 137

It’s quite common to set a font size for the entire page and then change font
sizes for individual elements in the page. For example, setting the font size
for the body element — in other words, the entire page — looks like this:

body {
 font-size: 90%;
}

With that CSS setting, the fonts across all elements on the page would be set
to 90% of their default value. You could then change individual areas of the
page to have a different font size. Using em’s for the other fonts allows you
to change the font sizes relative to that initial setting of 90%. This allows for
greater control over the page’s font sizes.

 Like other CSS settings, visitors can override your CSS with their own
settings. They may change the font sizes according to their needs.

Listing 2-3 shows a CSS file that depicts this functionality.

Listing 2-3: CSS to Change the Font Size
body {
 font-size: 90%;
}

span {
 font-size: 1.7em;
}

When combined with the HTML from the previous exercise, you get a page
like that in Figure 2-7. Note the increased font size for the word nicest, thanks
to the increased size set with an em.

When choosing a font sizing method, you can
use percentage, em’s, points, and pixels. Points
and pixels are fixed sizes and some browsers
can have trouble resizing them, or more

appropriately, the browsers don’t allow the
visitor to resize the text without using a zoom
tool. Percentages and em’s allow resizing.

Choosing a font sizing method

Changing Fonts138

Figure 2-7:
Changing
font sizes
with CSS.

 When using em’s for font sizes, an em value of 1.0 corresponds to 100%.
Therefore, 0.9em would be about 90%, while 1.7em (as in the example) is
essentially 170%.

Fonts set with pixels or points use their abbreviations, as in these examples:

font-size: 12px;
font-size: 12pt;

Setting the font color
Just as font sizes can be set, so too can the colors used for fonts. Care
should be taken when choosing font colors so as to make the text readable.
For example, using white text on a white background makes it impossible for
the reader to see the text!

Just as there are multiple options for how to change the font size, there are
also multiple ways to change the font color. You can use a friendly name for
common colors, like red, blue, green, and so on, or you can use a hexadecimal
code, or hex code for short.

 Hex codes are three- to six-character codes that correspond to the Red,
Green, and Blue (RGB) color mix appropriate to obtain the desired color.

Table 2-1 shows some common hex codes and their corresponding color.

Book II
Chapter 2

Adding Style w
ith

CSS
Changing Fonts 139

Table 2-1 Hex codes for colors
Code Color

#FF0000 Red

#00FF00 Green

#0000FF Blue

#666666 Dark Gray

#000000 Black

#FFFFFF White

#FFFF00 Yellow

#FFA500 Orange

Hex codes are the more accurate and preferred way to set colors in
HTML but they’re hard to remember. A tool like Visibone’s Color Lab at
www.visibone.com/colorlab is essential to obtaining the hex code
corresponding to the color that you want to use.

Font color is set using the color CSS property, as in this example (which is
the code for red):

color: #FF0000;

Listing 2-4 shows CSS to change colors of a element to blue using a
hex code:

Listing 2-4: Coloring a Font Using CSS
span {
 color: #0000FF;
}

When viewed in a browser with the HTML created earlier in this chapter, the
output looks like Figure 2-8. Note the blue coloring (which may be a bit difficult
to read in this black-and-white book) for the word “nicest” on the page.

http://www.visibone.com/colorlab

Adding Borders140

Figure 2-8:
Changing
the font
color to
blue.

Adding Borders
Borders can help provide visual separation between elements on a page.
You can add borders around just about anything in HTML and there are a
few border styles to choose from. Borders are added with the border CSS
property.

When creating a border with CSS, you set three things:

	 ✦	 Border thickness

	 ✦	 Border style

	 ✦	 Border color

These three items are set in a list, separated by a space, as in this example:

border: 1px solid black;

In this example, a border would be created and would be 1 pixel thick. The
border would be solid and would be black in color.

Some common border styles are shown in Table 2-2.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Borders 141

Table 2-2 Border Styles in CSS
Style Description
Solid A solid line

Dotted A dotted line

Dashed A line with a dash effect

Double Two solid lines

It’s time for an exercise to create a border around some elements. Follow
these steps.

 1. Open your text editor.

 2. Verify the HTML file from the preceding exercise.

 The HTML from the preceding exercise is the starting point for this
exercise. If yours doesn’t look like this, change it to look like this HTML.
For those of you who had this file exactly as in the preceding exercise,
the only thing you need to do is add a class called addBorder in the
first <div> element.

<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
<link rel=”stylesheet” type=”text/css” href=”style.

css”>
</head>
<body>
<div class=”boldText addBorder”>This is my web page.</

div>

<div>
 This is the nicest page I’ve made yet.
</div>

<div class=”boldText”>Here is some text on my page.</
div>

</body>
</html>

Adding Borders142

 3. Save the HTML file.

 Save it as css-border.html and place it in your document root.

 4. Open your CSS file.

 You should have a CSS file from the preceding exercise. The CSS file
from that exercise should contain a class called boldText and a CSS
rule changing all elements to italic. Within your CSS file, add and
change your CSS so that it looks like the following:

.boldText {
 font-weight: bold;
}

span {
 font-style: italic;
}

.addBorder {
 border: 3px double black;
}

 5. Save the CSS file.

 Save the file as style.css in your document root.

 6. View the page in a browser.

 Open your web browser and point to http://localhost/css-
border.html to view the page. You should see a page like Figure 2-9.

Figure 2-9:
Adding a
border to a
div element.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Borders 143

You may have noticed in this exercise that you now have two classes on the
first <div> in the page. That’s a great feature of classes because you can use
more than one on an element to combine them.

You can experiment with the CSS from this exercise to add different styles of
borders to different elements in the page.

You may not like how close the text is to the border in Figure 2-9. We sure
don’t. You can change this with CSS. The CSS padding property changes how
close the text will come to the inside edge of the border. For example, you
could change the CSS for the addBorder class to look like this:

.addBorder {
 border: 3px double black;
 padding: 5px;
}

When you do so, the resulting page will look like that in Figure 2-10.

Figure 2-10:
Adding
padding
within the
addBorder
class.

Padding can be added to move the text farther away from its borders.
Padding can be applied to any element, regardless of whether it has borders,
in order to move that element’s contents.

Changing List Styles144

When you add padding, the contents of the element move away from all
the edges. However, you can also add padding so that the contents move
away from the top, bottom, right, or left, or any combination therein. This
is accomplished with the padding-top, padding-bottom, padding-right, and
padding-left properties, respectively.

There’s a shortcut method for setting padding that sees all the padding
defined on one line. That shortcut isn’t used here, but you’ll see it in other
people’s CSS.

Where padding moves elements from the inside, there’s also a property
to move or shift elements around from the outside. This element is called
margin, and we discuss it later in the chapter when we talk about creating
page layouts.

Changing List Styles
Recall the example from Chapter 1 of this minibook that created a bulleted
list. That section indicated that you can change or even remove the bullets
from the list using CSS. Well, it’s true. You can. The bullet style for a list is
determined by the list-style-type CSS property.

There are numerous values for the list-style-type property. Table 2-3
shows some common ones.

Table 2-3 Common List Styles
Style Description

circle Provides a circle type bullet.

decimal The default style for lists, a simple number.

disc The default style for lists, a filled in circle style.

none Removes styling completely for the list.

square A square bullet.

upper-roman An uppercase Roman numeral, as in an outline.

Book II
Chapter 2

Adding Style w
ith

CSS
Changing List Styles 145

Changing bullet styles
The best way to see these styles in action is by trying them out. This exer-
cise uses Listing 1-7 from the preceding chapter, and we show you all that
code here in Step 3.

 1. Open your text editor.

 2. Change or create ul.html.

 If you have a file called ul.html from the previous chapter, open it
now. If you don’t, you can create one now by creating a new empty text
document.

 Inside the file, use the following HTML. If you’re using ul.html, then
you merely need to add the <link> element to incorporate a CSS file.

<!doctype html>
<html>
<head>
<title>An unordered list</title>
<link rel=”stylesheet” type=”text/css” href=”ul.css”>
</head>
<body>

 Pine
 Oak
 Elm

</body>
</html>

 3. Save the file.

 Save the file as ul.html in your document root.

 4. Create a new file.

 Create a new empty text document using your text editor.

 5. Place the following CSS in the new document:

ul {
 list-style-type: square;
}

 6. Save the CSS file.

 Save the file as ul.css in your document root.

Changing List Styles146

 7. Open your web browser and view the page.

 In your web browser, type http://localhost/ul.html into the address bar
and press Enter. You should see a page like the one in Figure 2-11.

Figure 2-11:
Changing
the list style.

You can experiment with the list-style-type property to add or change
bullet style.

Removing bullets
A common look for lists on web pages uses no bullets at all. This effect is
created by setting the value of the list-style-type to none, as in this
example, which can be used in the ul.css file you just created.

ul {
 list-style-type: none;
}

When applied to the page you created in the preceding exercise, the result
looks like Figure 2-12.

You apply the list-style-type property to the or and not to
the individual list items (the element).

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 147

Figure 2-12:
Removing
the bullets
from an
HTML list.

Adding a Background
The pages you’ve created so far have a white background, or more exactly,
they have the default background chosen by the browser. In old versions of
web browsers, that background color was gray. You can change the color of
the background using CSS, or use a background image.

Background colors and background images can be applied to the entire
page or to individual elements. Changing background colors on individual
elements helps to add highlight and color to certain areas of the page.

Changing the background color
The background color of an HTML element is changed with the background-
color CSS property. The background color uses the same syntax (hex code)
as font colors; refer to the discussion of font colors earlier in this chapter to
see hex codes for common colors.

Here’s an example that changes the background color of the entire page:

body {
 background-color: #FFFF00;
}

Adding a Background148

Figure 2-13 shows the resulting page. Note that the yellow color won’t come
through very well in the book, but it’s there!

Figure 2-13:
Adding
a yellow
background
color to a
page.

As previously stated, individual elements can also be changed and you can
use all the different CSS selectors to focus that color change to a class, to
an individual element (using an id), or to all elements by using the element
name. For example, changing all the <div> elements to yellow looks like
this:

div {
 background-color: #FFFF00;
}

You can also use CSS to target elements by their hierarchy; in other words,
you can target the elements when they appear as children of other elements.
This calls for an example. Many of the examples in this book use HTML
similar to that shown in Listing 2-5, so we use Listing 2-5 to show you how to
target certain HTML elements.

Listing 2-5: HTML Used in Some Examples
<!doctype html>
<html>
<head>
<title>A CSS Exercise</title>
<link rel=”stylesheet” type=”text/css” href=”style8.css”>
</head>
<body>
<div class=”boldText”>This is my web page.</div>

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 149

<div>
 This is the nicest page I’ve made yet.
</div>

<div class=”boldText”>Here is some text on my page.</div>

</body>
</html>

Focus on the element inside the second <div> in this HTML. You
could say that the element is a child of the <div>. Using CSS, you
can target this span by its position as a child of the <div>. This is helpful
if you want to apply certain styling to all elements of a certain type but you
don’t (or can’t) add a class to those elements. For example, if you wanted
to make all elements that appear within a <div> to have a red
background, you could do so with this CSS:

div span {
 background-color: #FF0000;
}

Applying this CSS to the CSS previously seen, including that for Figure 2-13,
you get a result like Figure 2-14, which (trust us) shows the word nicest
highlighted in red.

Figure 2-14:
Targeting
an element
in order to
apply a CSS
rule.

This CSS targeting can be applied in any way that you’d like, whether that’s
targeting a certain ID, a certain class, or certain elements, like the example
does. You can create powerful (and sometimes confusing) combinations of
CSS hierarchies in order to apply CSS rules.

Adding a Background150

You can use this CSS targeting to apply any CSS rule, not just background
colors.

Adding a background image
Background images are a good way to create a nice looking HTML page.
Using a background image, you can create a gradient effect, where one
part of the page is a solid color and the color fades out or gets lighter as it
stretches to the other side.

Background images appear behind other elements. This means that you
can overlay all your HTML, including other images, on top of a background
image.

You can find many free images through the Creative Commons. See http://
search.creativecommons.org for more information. Be sure to choose
an image that still allows for the text to be readable on the page; black text
on a dark picture is not a good match.

Background images are added with the background-image CSS property,
as described here and in the following sections.

background-image:url(“myImage.jpg”);

Adding a single background image
One of the features of background images is that you can tile or repeat them
within a page. This means that no matter how large the visitor’s screen, the
background image will always appear. Conversely, you can also choose to
not repeat the background image. This section shows how to add a single,
non-repeating image.

In order to complete this exercise, you need an image. The image will
preferably be at least 800 pixels by 600 pixels. You can find out the image
resolution by right-clicking the image and selecting Properties in Windows
or choosing Get Info from the Finder window on a Mac.

 1. Open your text editor.

 Create a new empty text document in your text editor.

 2. In the text editor, enter the following HTML:

<!doctype html>
<html>
<head>
<title>Background Image</title>
<link rel=”stylesheet” type=”text/css”

http://search.creativecommons.org/
http://search.creativecommons.org/

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 151

 href=”image-style.css”>
</head>
<body>
</body>
</html>

 3. Save the file.

 Save the file as backimage.html in your document root.

 4. Create a new text document.

 Create a new empty text document with your text editor.

 5. Place the following CSS in the new document.

 Be sure to use the name of your image. In this example, we’re using an
image called large-snow.jpg. The image should be saved within your
document root.

body {
 background-image:url(“large-snow.jpg”);
 background-repeat: no-repeat;
}

 6. Save the CSS file.

 Save the file as image-style.css and make sure it’s saved within your
document root.

 7. Open your web browser and view the page.

 Open your web browser and navigate to the page at http://local
host/backimage.html. You’ll see the page with a background image.
You can see a screenshot of our page, with the large-snow.jpg image,
in Figure 2-15.

Figure 2-15:
A single
background
image.

Adding a Background152

Depending on the size of your image and your screen, you may notice that
the image ends, as it does along the right side of Figure 2-15. Additionally,
you may notice that the image isn’t centered. Keep reading for a solution.

Improving the single background image page
A common approach used to create a better looking page is to add a
background color that matches the edges of the image. In the case of our
image, the top and bottom are black. Therefore, we could add a rule to the
CSS to make the default background color black. This won’t have any effect
where the image is located — the image takes precedence — but it will
matter along the bottom where the image ends.

The CSS for this look is as follows:

body {
 background-image:url(“large-snow.jpg”);
 background-repeat: no-repeat;
 background-color: #000000;
}

With that rule in place, the image will still end but the appearance won’t be
quite as shocking or noticeable because it matches the color of the edge of
the image, as shown in Figure 2-16.

Figure 2-16:
Adding a
background
color and a
background
image.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding a Background 153

While the background color trick solves the problem with the edge of the
image, it doesn’t solve the centering issue. The current background image
is applied to the body — in other words, the entire page. In order to center
the background image, another CSS property needs to be added, as shown in
this CSS:

body {
 background-image:url(“large-snow.jpg”);
 background-repeat: no-repeat;
 background-color: #000000;
 background-position: center top;
}

This CSS adds the background-position rule and places it at the center
at the top of the page. Other values include left, right, and bottom, and
you can combine them so that the background image would appear at the
bottom right, for example.

The CSS shown here places the image at the center of the page and at the
top. This results in the page shown in Figure 2-17.

Figure 2-17:
A centered
background
image on
the top,
with a
background
color.

With that image in place, you can then add any HTML to the page that you
see fit. Note with an image like this (a dark top and light middle) you need to
adjust the font colors so that the text is visible on the page.

Adding a Background154

Adding a repeating image
You can add an image that repeats. This is a common scenario for web
pages because then the image doesn’t end along the sides, no matter how
large your resolution is. This also alleviates the need for a background posi-
tion because the background image applies to the entire element.

When applied to the entire page, as in the examples shown, you can also
forego the background-repeat rule and the background color because the
image continues throughout the entire page.

An ideal repeating image is one that doesn’t have noticeable borders
because those borders will show up when the image is tiled or repeated on
the page.

Figure 2-18 shows a small image (15 pixels x 15 pixels) used as a repeating
image with the following CSS:

body {
 background-image:url(“back.jpg”);
}

Figure 2-18:
A repeating
background
image.

As in the example for a single image background, you can now add HTML
atop the background, again choosing a font color that offsets the image so
that visitors can easily read the text.

AU
DI

A4
 up

loa
de

r

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 155

Creating Page Layouts
You’ve now learned a good amount of CSS to change the behavior and
appearance of individual items, add background colors, style lists, and so
on. All of this leads to creating pages by using CSS. CSS is used to create
more complex appearances for web pages than you’ve seen so far. For
example, you can create column effects, where there’s a menu on the left or
right side and content in the other column, and we tell you how to do that
here.

When working with alignment and column layouts, it’s sometimes helpful to
add a border to the element to see where it begins and ends so that you can
see how the layout looks.

Creating a single-column layout
Everything you’ve seen so far has been a single-column layout. There’s only
one column, aligned on the left of the page. You can, however, control that
alignment with CSS. Doing so means creating more complex HTML than
you’ve seen so far but nothing in the HTML will be new; there’ll just be more
HTML than before.

 1. Open a text editor.

 Open your text editor and create a new empty document.

 2. Within the empty document, enter the following HTML:

<!doctype html>
<html>
<head>
<title>Single Column</title>
<link rel=”stylesheet” type=”text/css” href=”single.

css”>
</head>
<body>
<div id=”container”>
 <div id=”content”>
 <h2>Here’s some content</h2>
 <p>This is where a story would go</p>
 <h2>Here’s more content</h2>
 <p>This is another story</p>
 </div> <!-- end content -->
</div> <!-- end container -->
</body>
</html>

 3. Save the file.

 Save the file as single.html in your document root.

Creating Page Layouts156

 4. Open your browser and view the page.

 View the page by going to http://localhost/single.html in your
browser. You’ll see a page similar to that in Figure 2-19.

Figure 2-19:
A basic
page before
adding CSS.

 5. Create a new text document.

 Create a new empty text document in your text editor.

 6. In the document, place the following CSS:

body {
 font-family: arial,helvetica,sans-serif;
}

#container {
 margin: 0 auto;
 width: 600px;
 background: #FFFFFF;
}

#content {
 clear: left;
 padding: 20px;
}

 7. Save the CSS file.

 Save the file as single.css in your document root.

 8. Open your web browser.

 Navigate to http://localhost/single.html in your browser. If
your browser is still open, reload the page with Ctrl+R on Windows or
Command+R on Mac. You’ll see a page like that in Figure 2-20. See the
paragraphs that follow for more information on what specific modifica-
tions you made in Step 6.

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 157

Figure 2-20:
A single-
column
layout.

Later in this chapter, you see how to add a header and footer onto this
layout in order to improve its look and functionality.

The HTML for this layout uses a <div> element as a container. The container
helps to create the layout and doesn’t hold any text content of its own. The
CSS for this exercise uses three CSS properties that might be new to you:
width, margin, and clear. Here’s how they work:

	 ✦	 width: Sets the horizontal width of an element. In this case, the container
is set to 600px (pixels) wide. No matter how small the browser window
is, your HTML will never get smaller than 600px.

	 ✦	 margin: This is the complement to the padding property shown earlier
in this chapter, in the “Adding Borders” section. The margin property
defines the spacing on the outside of the element. In the case shown
here (margin: 0 auto;), the shortcut method is used. See the sidebar
for more information. The value “auto” means that the browser will
choose the value.

	 ✦	 clear: Makes it so that no elements can appear on the side of the
element to which the rule applies. In the example, clear left was used
on the <div> with the id of #content. This means that nothing could
appear on the left side of that element. Other values for clear include
“both,” “none,” “right,” and “inherit.”

You can experiment with the margins of your browser window to see how
the layout created in the exercise reacts or moves along with the browser.

The layout created in this section is called a single-column fixed-width
layout. Another option is a single-column liquid layout. A liquid layout can
work better in certain devices. The fixed-width layout shown can sometimes
result in a horizontal scroll bar at the bottom of the page.

Creating Page Layouts158

To change the layout to a liquid layout, you only need to change a small
amount of CSS in the #container, as shown here:

body {
 font-family: arial,helvetica,sans-serif;
}

#container {
 margin: 0 30px;
 background: #FFFFFF;
}

#content {
 clear: left;
 padding: 20px;
}

Note the only changes are to remove the width property within the
#container and also change the margin from “0 auto” to “0 30px.” With
that, the layout becomes a liquid layout and works better, especially in
mobile devices.

Rather than defining a rule for each of the top,
bottom, right, and left elements of margin or
padding, you can use a shortcut method that
defines all of them on one line. For example:

margin: 0px 50px 200px 300px;
is equivalent to this:

margin-top: 0px;
margin-right: 50px;
margin-bottom: 200px;
margin-left: 300px;

When four numbers appear in the rule, the
order is top, right, bottom, and left. To help
remember the order, use the mnemonic
“TrouBLe,” which takes the first letter of each
of the Top, Right, Bottom, Left, and makes them

into a word to remind you how much trouble it
is remembering the order.

Instead of all four values, you sometimes see
one, two, or three of the values present for
margin or padding, as in the example shown
earlier:

margin: 0 auto;
When two values are used, the first value
corresponds to the top and bottom and the
second value corresponds to the right and left.
When three values are used, the first is the top,
the second is the left and right, and the last is
the bottom. Finally, when one value is used, it
applies equally to the top, right, bottom, and
left.

Shortcuts for margin and padding

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 159

Creating a two-column layout
A two-column layout uses a bit more HTML to achieve the effect of multiple
columns. This is frequently done to add a menu along the side of a page or
links to other stories or content.

Listing 2-6 shows the HTML involved for a two-column fixed-width layout.

Listing 2-6: A Two-Column Fixed-Width Layout
<!doctype html>
<html>
<head>
<title>Two Column</title>
<link rel=”stylesheet” type=”text/css” href=”double.css”>
</head>
<body>
<div id=”container”>
 <div id=”mainContainer”>
 <div id=”content”>
 <h2>Here’s some content</h2>
 <p>This is where a story would go</p>
 <h2>Here’s more content</h2>
 <p>This is another story</p>
 </div> <!-- end content -->
 <div id=”sidebar”>
 <h3>Menu</h3>

 Menu item 1
 Menu item 2
 Menu item 3

 </div> <!-- end sidebar -->
 </div> <!-- end mainContainer -->
</div> <!-- end container -->
</body>
</html>

This HTML uses the container <div> from the single-column layout and
adds another container <div> to hold the content. That <div>, called
mainContainer, holds both the content and the sidebar. The other
addition is the sidebar itself, aptly titled sidebar. That sidebar holds a
menu with an unordered list () in it.

The CSS for the two-column layout is shown in Listing 2-7.

Creating Page Layouts160

Listing 2-7: CSS for a Two-Column Fixed-Width Layout
#container {
 margin: 0 auto;
 width: 900px;
}

#mainContainer {
 float: left;
 width: 900px;
}

#content {
 clear: left;
 float: left;
 width: 500px;
 padding: 20px 0;
 margin: 0 0 0 30px;
 display: inline;
}

#sidebar {
 float: right;
 width: 260px;
 padding: 20px 0;
 margin: 0 20px 0 0;
 display: inline;
 background-color: #CCCCCC;
}

This CSS uses several of the items that you’ve seen already, including
margin, padding, clear, and background-color, among others. New to
this CSS are the float and the display properties.

The float property defines whether an element will move or float within a
layout, either to the left or to the right or whether it won’t float at all (none),
as is the default. However, because you want to create two columns next
to each other, you need to float the content container to the left and the
sidebar to the right. Therefore, if you want the sidebar to appear on the
right, you simply need to swap float: left in the #content CSS with the
float: right found in the #sidebar’s CSS.

The display property sets how the element should be displayed. Certain
elements are known as block-level elements and display the entire width of
the page. The <div> element is a good example of this. Because you want to
make the columns appear next to each other, you need to change this block
display behavior to inline (we introduce inline elements in the preceding
chapter), so that the element doesn’t extend the full width of the page.

Book II
Chapter 2

Adding Style w
ith

CSS
Creating Page Layouts 161

Three frequently used values for the display property are block (to extend
the element the full width), inline (to make the element use only its own
width for display), and none (which removes the element from display
entirely).

When viewed in a browser, the layout shown in Listings 2-6 and 2-7 produces
a page like that in Figure 2-21.

Figure 2-21:
A two-
column
fixed-width
layout.

The layout shown in Figure 2-21 is a fixed-width layout. Converting this to a
liquid layout means changing the width and margin values in the CSS from
pixels (px) to percentages (%). The CSS to convert into a liquid layout is
shown in Listing 2-8.

Listing 2-8: Converting to a Two-Column Liquid Layout
#container {
 margin: 0 auto;

Setting the CSS display property to none
hides an element from a page. When you do
so, the element is removed entirely from the
page. You can also use another CSS property,
visibility , to hide elements. When
hiding an element with the visibility property

(visibility: hidden;), the box or
area on the page still remains in place but the
element becomes invisible. Making the element
visible again (visibility: visible;)
shows the element.

Hiding elements

Creating Page Layouts162

 width: 100%;
}

#mainContainer {
 float: left;
 width: 100%;
}

#content {
 clear: left;
 float: left;
 width: 65%;
 padding: 20px 0;
 margin: 0 0 0 5%;
 display: inline;
}

#sidebar {
 float: right;
 width: 20%;
 padding: 20px 0;
 margin: 0 2% 0 0;
 display: inline;
 background-color: #CCCCCC;
}

The changes occur in the #container, #mainContainer, #content, and
#sidebar sections, to change the previous values that used pixels to
percentages. This layout now changes with the width of the browser, as
shown in Figure 2-22, where you’ll notice that the width of the browser is
much smaller.

Figure 2-22:
Creating a
liquid layout
with two
columns.

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Headers and Footers to a Page 163

Adding Headers and Footers to a Page
The layouts you’ve seen so far provide a good base from which you can
build a more complex web page and indeed website. However, the page is
missing two things: a header and a footer.

Headers are typically used to convey information such as the name of the
site or to provide a menu; footers are used to provide additional information
such as copyright and are also being used to provide a map of links within
a site, known as a site map. Additionally, we tell you how to create a menu
within the header.

Creating a header, header menu, and footer
You’ve seen how to create a multi-column layout with a main content area
and a sidebar. To create this layout, you add a <div> element to hold the
sidebar’s content. You then apply CSS rules to the <div> to set its width
and position. Creating a header and footer is accomplished in largely the
same manner. An additional <div> is created to hold the content for each
and then rules are applied to those <div> elements to position them.

This being the last example in the chapter, it serves as a capstone exercise.

 1. Open your text editor.

 Create a new blank text document.

 2. Enter the following HTML in the text document:

<!doctype html>
<html>
<head>
<title>Two Column With Header and Footer</title>
<link rel=”stylesheet” type=”text/css” href=”final.

css”>
</head>
<body>
<div id=”container”>
 <div id=”header”>
 <h1>This is my site!</h1>
 </div> <!-- end header -->
 <div id=”menu”>

 Home
 Services

Adding Headers and Footers to a Page164

 About Me
 Contact Me

 </div> <!-- end menu -->
 <div id=”mainContainer”>
 <div id=”content”>
 <h2>Here’s some content</h2>
 <p>This is where a story would go</p>
 <h2>Here’s more content</h2>
 <p>This is another story</p>
 </div> <!-- end content -->
 <div id=”sidebar”>
 <h3>Menu</h3>

 Menu item 1
 Menu item 2
 Menu item 3

 </div> <!-- end sidebar -->
 <div id=”footer”>
 <p>Copyright (c) 2012 Steve Suehring</p>
 </div> <!-- end footer -->
 </div> <!-- end mainContainer -->
</div> <!-- end container -->
</body>
</html>

 3. Save the file.

 Save the file as final.html in your document root.

 4. Create a new text document.

 Create a new empty text document. This one should hold the
following CSS:

body {
 font-family: arial,helvetica,sans-serif;
}

#container {
 margin: 0 auto;
 width: 100%;
}

#header {
 background-color: #abacab;
 padding: 10px;
}

#menu {
 float: left;
 width: 100%;

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Headers and Footers to a Page 165

 background-color: #0c0c0c;
}

#menu ul li {
 list-style-type: none;
 display: inline;
}

#menu li a {
 display: block;
 text-decoration: none;
 border-right: 2px solid #FFFFFF;
 padding: 3px 10px;
 float: left;
 color: #FFFFFF;
}

#menu li a:hover {
 background-color: #CCCCCC;
}

#mainContainer {
 float: left;
 width: 100%;
}

#content {
 clear: left;
 float: left;
 width: 65%;
 padding: 20px 0;
 margin: 0 0 0 5%;
 display: inline;
}

#sidebar {
 float: right;
 width: 30%;
 padding: 20px 0;
 margin: 0;
 display: inline;
 background-color: #CCCCCC;
}

#footer {
 clear: left;
 background-color: #CCCCCC;
 text-align: center;
 padding: 20px;
 height: 1%;
}

Adding Headers and Footers to a Page166

 5. Save the file.

 Save the CSS file as final.css in your document root.

 6. Open your browser and view the page.

 Open your web browser, navigate to http://localhost/final.
html, and you’ll see the page, like the one shown in Figure 2-23.

Figure 2-23:
A two-
column
liquid layout
with a
header and
footer.

Examining the HTML and CSS files
To create this layout, you use a more complex HTML file than you’ve used
before but there isn’t anything in that file that you haven’t already seen. It’s
just longer in order to create the additional HTML and content for the page!

The CSS does use some additional items, specifically to create the menu or
links across the top. Note that this is separate from the contextual menu that
appears on the right. The menu created for this page appears in the header
and provides links to the areas of the site, such as Home, Services, About
Me, and Contact Me.

The CSS for that section looks like this:

#menu ul li {
 list-style-type: none;
 display: inline;
}

Book II
Chapter 2

Adding Style w
ith

CSS
Adding Headers and Footers to a Page 167

That section uses a hierarchical structure to target only the elements
within the #menu area. The list-style-type was set to none, which you
saw earlier in the chapter. However, the display was set to inline. When
used with lists, it makes the lists flow horizontally rather than vertically, so
you get the desired effect here.

The next section of CSS changed the behavior of the <a> elements within
that menu and was again targeted using #menu li a so that the CSS rule
applied only to those specific <a> elements.

#menu li a {
 display: block;
 text-decoration: none;
 border-right: 2px solid #FFFFFF;
 padding: 3px 10px;
 float: left;
 color: #FFFFFF;
}

This CSS rule uses the standard float, display, and border properties
explained earlier in this chapter. Added here is a text-decoration CSS
property, which changes the default behavior of the <a> link. Rather than
being underlined and colored, changing the text-decoration to none
removes that effect, giving the menu a cleaner look.

The final piece of the menu’s CSS is this:

#menu li a:hover {
 background-color: #CCCCCC;
}

This CSS rule targets the hover behavior of the <a> element. When the
visitor hovers over the link, it will change color, in this case to #CCCCCC,
which is a shade of gray.

168 Book II: HTML and CSS

AU
DI

A4
 up

loa
de

r

Chapter 3: Creating and
Styling Web Forms
In This Chapter
✓ Using web forms to get information

✓ Creating a form

✓ Using CSS to style a form

W
eb forms enable your site to gather information from users. This
chapter discusses web forms in all their glory and shows you how to

both create a form and how to style it with CSS.

Using Web Forms to Get Information
With web forms, like the one shown in Figure 3-1, you can gather
information from users.

Figure 3-1:
A basic
web form.

Using Web Forms to Get Information170

Web forms can collect anything from name and e-mail address and a
message, like the one shown in Figure 3-1, to images and files from your
computer. For instance, when you log in to your web-based e-mail account
like Gmail, you’re filling out a form with your username and your password.
Here’s a look at how you can use HTML to create web forms.

Understanding web forms
When you fill out a form, the information is sent to the web server. What
exactly the web server does with the information is up to the programs
running on the server. For example, when you fill out the contact form on
my website, the server e-mails the information e-mailed to me, but when you
fill out a form to find hotel rooms on a hotel’s website, the server looks in its
database for matching rooms based on the dates that you fill out. In Book VI,
you work with server-side programs to process web forms. For now, focus
on the forms themselves.

In HTML terms, forms are created with the <form> element. Forms open
with <form> and close with </form>, as in this example:

<form action=”#”>
<input type=”text” name=”emailaddress”>
<input type=”submit” name=”submit”>
</form>

You see how to create your own form in the next section.

Looking at form elements
There are many ways to get input through a form, each with its own specific
name or type of input. The code example in the preceding section includes
two input types: a text type and a submit type. The text type creates
a box where the users can enter information. The submit type creates a
button that users use to send the information to the server.

There are many other types of input elements in a form, including these:

	 ✦	 Drop-down or select: Creates a drop-down box with multiple choices
from which the user can pick one.

	 ✦	 Check boxes: Creates one or more boxes that the user can select.

	 ✦	 Radio buttons: Creates one or more small buttons, of which the user
can select only one.

	 ✦	 Others: There are other specialty types — including password, text
area, and file — that enable you to gather other types of input from the
user.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Using Web Forms to Get Information 171

You’ve already seen the basic form elements, but there’s more to creating
forms than just adding elements. Forms need to be integrated with other
HTML in order to display like you want them to. Beyond that, as you see
later in the chapter, you can also style forms with Cascading Style Sheets
(CSS). But for now, work on building a simple form.

Figure 3-2 shows a web form using two text input types.

Figure 3-2:
A basic web
form with
two inputs.

The HTML used to create this form is shown here:

<!doctype html>
<html>
<head>
<title>A Basic Form</title>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div>
 <label for=”username”>Name:</label>
 <input id=”username” type=”text” name=”username”>
 </div>
 <div>
 <label for=”email”>E-mail Address:</label>
 <input id=”email” type=”text” name=”email”>
 </div>
</fieldset>
</form>
</body>
</html>

Creating a Form172

Up until the first <form> tag, the HTML is all stuff you’ve already seen
earlier in this book. The form begins with that opening <form> tag. When
you create a form, you use two attributes fairly often, one of which is the
action attribute. The action attribute tells the form where to go or what to
do when the user clicks Submit. You see another attribute, method, a little
later.

The next element found in the form is <fieldset>, which is optional for a
form. The <fieldset> element is used primarily for layout and accessibility.
The next element found is the <legend> element. This element creates
the Form Information legend and the box that (though difficult to see in
the screenshot) surrounds the inputs in the form. Like <fieldset>, the
<legend> element is entirely optional.

Next in the form are the <div> elements used to create each row of inputs.
The <label> element ties the friendly name — what you see on the screen,
in this case, Name — to the actual input. The <label> element is optional
but recommended because it helps with assistive technologies. Below the
<label> element you see an <input> element. This <div>, <label>,
<input> structure is repeated for the E-mail Address field.

Creating a Form
With some understanding of how forms are structured, it’s time to look at
creating one with some of the elements already discussed. In this section,
you find out more about the <form> element and how to create text boxes,
drop-down boxes, check boxes, and radio buttons that visitors to your
website can use to enter information. You also find out how to create a
Submit button, which lets visitors indicate that they’re ready to transmit
that information to you.

All about the form element
You already saw that the <form> element commonly uses a couple different
attributes, action and method. The action of a form typically points to the
server program that will handle the input from the form. It’s where the form
sends its data.

If the action tells the form where to send the data, then the method attribute
tells the form how to send the data to the server. There are two primary
methods that you’ll encounter: GET and POST. The GET method is appropriate
for small forms, whereas the POST method is appropriate for larger forms or
ones that need to send a lot of information.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 173

When the action is set, as you’ve seen, to the pound sign or hash mark
(#), the form essentially goes nowhere and does nothing, which for now is
exactly what you want because you haven’t built a server program to work
with the incoming data yet!

Adding a text input
You’ve already seen text inputs in this chapter. Adding one is as simple as
using the type of “text”. You can also add a couple more handy attributes,
size and maxsize, which tell the browser how large to make the text box
on the screen and the maximum amount of characters that are allowed in
the field.

For example:

<input type=”text” name=”username” size=”20” maxsize=”30”>

This HTML creates a 20-characters-wide input box, and the most that
someone could enter into the box is 30 characters.

Another attribute that you might see is the value attribute, which
prepopulates the field with the value you provide. Consider this example
HTML:

<input type=”text” name=”username” value=”Username Here”>

When you use a GET method, the form’s con-
tents are sent as part of the URL. In the sample
form that you saw earlier, the URL would end
up being something like:

http://localhost/form1.html?
username=Steve&email=
steve@example.com

The first thing you notice is that a user can
easily see all the form elements, including
their names and values, right in their browser’s
address bar. Beyond that, though, there’s a
practical limitation in just how long that URL

can get. Many browsers, like Internet Explorer,
only allow a certain number of characters in
the URL, so if your form or the data being sent
is too long, then it won’t work.

When you use a POST, there’s no such length
restriction set by the browser. It’s important
to note, though, that the user can still see
the form’s data and how it will be sent to the
server; you can’t hide that from the user no
matter which method you use.

For most forms, I use POST unless there’s a
specific reason to use the GET method.

Knowing the difference in the
GET and POST methods

Creating a Form174

Adding that to the form from Figure 3-2 results in a form like the one shown
in Figure 3-3. Notice the value in the Name field is now set according to the
value property in the <input> definition.

Figure 3-3:
Adding a
value to a
field.

Adding a drop-down box
A drop-down box, also known as a select box, presents many options, from
which the user can select one. An example is a list of states, such as Alaska,
California, Wisconsin, and so on, where the user typically chooses one from
among the list. The drop-down box provides a good way to display that
information. You create a drop-down using the <select> element along
with <option> elements, like this:

<select name=”state”>
 <option value=”CA”>California</option>
 <option value=”WI”>Wisconsin</option>
</select>

Here’s a full form with a drop-down added to it:

<!doctype html>
<html>
<head>
<title>A Basic Select</title>
</head>
<body>
<h1>A Basic Select</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 175

 <div>
 <label for=”state”>State:</label>
 <select id=”state” name=”state”>
 <option value=”CA”>California</option>
 <option value=”WI”>Wisconsin</option>
 </select>
 </div>
</fieldset>
</form>
</body>
</html>

When it’s viewed in a browser, you get a page like that shown in Figure 3-4.

Figure 3-4:
Creating a
select drop-
down box.

When a drop-down box is displayed, the first element is the one that shows
up as the default. In the example shown in Figure 3-4, California is displayed
as the default option. You can, however, change the default value in two
different ways, as discussed here.

Like text boxes, you can set a default value for a drop-down box. This is
accomplished using the selected attribute. Though not always required,
it’s a good idea to set a value for the selected attribute, as in this example
that would change the default value to Wisconsin:

<select name=”state”>
 <option value=”CA”>California</option>
 <option selected=”selected” value=”WI”>Wisconsin</option>
</select>

Another way to set a default value of sorts is to set a blank option as the
first option in the list. While this isn’t technically a default value, it shows

Creating a Form176

up first on the list so it’ll show as the default option when a user loads the
page. A common way you’ll see this is to use “Select a value” or similar
wording as the first option, indicating to the user that there’s some action
required, as shown here and in Figure 3-5.

 <select name=”state”>
 <option value=””>Select a value...</option>
 <option value=”CA”>California</option>
 <option value=”WI”>Wisconsin</option>
 </select>

Figure 3-5:
Setting the
first value
for a
drop-down.

Using the selected attribute overrides the first value trick shown in this
example.

Creating check boxes
Another way to represent multiple values is by using check boxes. Where
drop-downs are good to represent multiple values when there are a lot of
options, check boxes are good to represent multiple values when there are
just a few options, as might be the case when building a form for choosing
pizza toppings. When someone adds pizza toppings, she can choose more
than one on her pizza, but there usually aren’t too many toppings.

<!doctype html>
<html>
<head>
<title>Checkboxes</title>
</head>
<body>
<h1>Checkboxes</h1>
<hr>
<form action=”#”>

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 177

<fieldset>
 <legend>Pizza Information</legend>
 <div>Toppings:

 <input type=”checkbox” id=”sausage”
 name=”toppings” value=”sausage”>
 <label for=”sausage”>Sausage</label>

 <input type=”checkbox” id=”pep”
 name=”toppings” value=”pep”>
 <label for=”pep”>Pepperoni</label>

 <input type=”checkbox” id=”mush”
 name=”toppings” value=”mush”>
 <label for=”mush”>Mushrooms</label>

 </div>
</fieldset>
</form>
</body>
</html>

This HTML creates three check boxes in a group called “toppings”. The
resulting page is shown in Figure 3-6.

Figure 3-6:
Using check
boxes for
input.

Notice in the HTML that each check box has the same name attribute but
uses different value attributes and different id attributes. The id attributes
need to be unique in order for the HTML to be valid (and for the labels to
work correctly). The name is the same because the check boxes are actually
grouped together; they represent one type of information: pizza toppings.

In practice, you may see check boxes without name attributes or with a
different name attribute for each check box. The example you see here is
one that keeps the information logically grouped, which makes it easier to
maintain later and also makes it easier to work with in a server program, as
you see later in this book.

Creating a Form178

Using radio buttons
Radio buttons are used where there are multiple values but the user can
choose only one from among those options, as would be the case with a type
of crust for a pizza. The crust can be thin or deep dish — but not both or the
pizza would be a complete mess.

Here’s the HTML to create radio buttons. Notice that the HTML isn’t really
all that much different than the check box example:

<!doctype html>
<html>
<head>
<title>Radio</title>
</head>
<body>
<h1>Radio</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Pizza Information</legend>
 <div>Crust:

 <input type=”radio” id=”deep”
 name=”crust” value=”deep”>
 <label for=”deep”>Deep Dish</label>

 <input type=”radio” id=”thin”
 name=”crust” value=”thin”>
 <label for=”thin”>Thin</label>

 </div>
</fieldset>
</form>
</body>
</html>

When viewed in a browser, the result is like that in Figure 3-7.

Like check boxes, radio buttons have the same name but use different
value and id attributes. Like check boxes, radio buttons use these values
for the same reasons. With radio buttons, the name attribute is even more
crucial. Radio buttons that share the same name attribute are in the same
group, meaning the user can choose only one of the options in that group.
If you want the user to be able to choose more than one option, then you
should probably be using a check box.

However, you can use more than one radio button group on a page. Just use
a different name for the new radio button group and the user will be able to
select from that group too.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Creating a Form 179

Figure 3-7:
Radio
buttons on a
web page.

Submitting and clearing the form
Thus far, you’ve seen some of the input types that you can use on a web
page to gather information. The really big glaring piece missing from your
knowledge is how to actually submit the form or send it to the server for
processing. That’s accomplished with another input type called submit.

<input type=”submit” name=”submit”
 value=”Process Request”>

For example, consider this example, where a Submit button is added to a
form that you saw earlier in the chapter:

 <!doctype html>
<html>
<head>
<title>A Basic Form</title>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div>
 <label for=”username”>Name:</label>
 <input type=”text” id=”username” name=”username”>
 </div>
 <div>

Using CSS to Align Form Fields180

 <label for=”email”>E-mail Address:</label>
 <input type=”text” id=”username” name=”email”>
 </div>
 <div>
 <input type=”submit” name=”submit”
 value=”Send Form”>
 </div>
</fieldset>
</form>
</body>
</html>

This HTML results in a page like that in Figure 3-8.

Figure 3-8:
Adding
a Submit
button.

Another button that you see on forms is a Clear or Reset button. The Reset
button clears the input and resets the form, removing anything the user has
placed into the form. Adding a Reset button is as simple as adding an input
type of “reset”:

<input type=”reset” name=”reset” value=”Clear Form”>

Using CSS to Align Form Fields
The form examples you’ve seen so far have been pretty boring, just plain
HTML with no alignment or visual appeal. Forms are just standard HTML, so
they can be styled using CSS. This section looks at how to do just that. The
example you’ll see in this section uses CSS right within the HTML file. This is
done for simplicity.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Using CSS to Align Form Fields 181

When aligning form fields, the key is to use well-structured HTML. The HTML
that you’ve seen so far in this chapter fits the bill and so aligning the form
fields will be rather easy. In fact, using the HTML from the final example as a
guide, merely adding this style information to the <head> section aligns the
fields:

<style type=”text/css”>
.form-field {
 clear: both;
 padding: 10px;
 width: 350px;
}
.form-field label {
 float: left;
 width: 150px;
 text-align: right;
}
.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}
</style>

The result is shown in Figure 3-9. Each of the style rules match using a CSS
class and, in the case of the label and input, a child selector is further
used to narrow the application of the CSS rule.

Figure 3-9:
Aligning
form fields
with CSS.

Using CSS to Align Form Fields182

But wait! The Send Form button is now stretched to 150px wide and the text
(“Send Form”) is aligned to the left side of the button. Oops, looks like that’s
exactly what you asked for:

.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}

You need a way to either make that button smaller or at the very least to
align the text in the center of it. Steve personally likes bigger buttons. They
make it easier for users to click or tap, if they’re using a mobile device. So
we’re choosing to align the text in the center but leave the button the same
size.

Aligning it in the center means adding something to the Submit button’s
HTML in order to be able to access it within the CSS. The easiest way to do
that is by adding an id attribute to the Submit button, like so:

<input id=”submit” type=”submit” name=”submit”
 value=”Send Form”>

Here’s the CSS to add:

#submit {
 text-align: center;
}

The result is shown in Figure 3-10.

Figure 3-10:
Aligning
the text of
the Submit
button.

Book II
Chapter 3

Creating and Styling
W

eb Form
s

Using CSS to Align Form Fields 183

The full HTML and CSS are shown here:

<!doctype html>
<html>
<head>
<title>A Basic Form</title>
<style type=”text/css”>
.form-field {
 clear: both;
 padding: 10px;
 width: 350px;
}
.form-field label {
 float: left;
 width: 150px;
 text-align: right;
}
.form-field input {
 float: right;
 width: 150px;
 text-align: left;
}
#submit {
 text-align: center;
}
</style>
</head>
<body>
<h1>A Basic Form</h1>
<hr>
<form action=”#”>
<fieldset>
 <legend>Form Information</legend>
 <div class=”form-field”>
 <label for=”username”>Name:</label>
 <input type=”text” id=”username” name=”username”>
 </div>
 <div class=”form-field”>
 <label for=”email”>E-mail Address:</label>
 <input type=”text” id=”username” name=”email”>
 </div>
 <div class=”form-field”>
 <input id=”submit” type=”submit” name=”submit”

value=”Send Form”>
 </div>
</fieldset>
</form>
</body>
</html>

	PHP, MySQL, JavaScript & HTML5 All-In-One For Dummies
	Book II: HTML and CSS
	Chapter 1: Creating a Basic Page with HTML
	Understanding the HTML Building Blocks
	Sections of an HTML Document
	Creating Good HTML
	Practicing Creating a Table
	Including Links and Images on Your Web Page
	Writing Valid HTML
	Validating Your HTML

	Chapter 2: Adding Style with CSS
	Discovering What CSS Can and Can’t Do for Your Web Page
	Connecting CSS to a Page
	Targeting Styles
	Changing Fonts
	Adding Borders
	Changing List Styles
	Adding a Background
	Creating Page Layouts
	Adding Headers and Footers to a Page

	Chapter 3: Creating and Styling Web Forms
	Using Web Forms to Get Information
	Creating a Form
	Using CSS to Align Form Fields

